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Abstract. The problem of a uniform ship-hull girder vibrating vertically close to water bottom is studied. A simple
formula for the added mass is found by use of the method of matched asymptotic expansions. Results obtained
from the present method and BEM are compared. They are in good agreement in the range considered here. The
obtained added mass is used to predict the natural vibrations of a uniform beam vibrating close to water bottom.
Numerical values show that the effects of shallow water are significant. The first- and second-order frequencies of
the ship hull studied in this paper in deep water are about 1·4–3 times higher than those in shallow water.
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1. Introduction

Structures like ship hulls vibrating in air and in water exhibit quite different vibration charac-
teristics. The difference is due to hydrodynamic forces acting on the ship hull. It is well known
that this hydrodynamic force can greatly reduce the natural frequencies of the ship hull.

Hydrodynamic influence on ship-hull vibration in water is expressed in terms of added
mass. A ship hull vibrating in water brings the surrounding water in motion, which in turn
exerts an opposing force on the hull. This additional force is required to accelerate the sur-
rounding fluid. The effect is the same if an addition were made to the mass of the hull. This
addition is hydrodynamic inertia mass called added mass. A vibrating ship then acts as if an
added mass were attached. The added mass is of the same order as the ship mass and, thus,
the natural frequencies of a ship hull are notably different from those of the same ship hull in
air.

After the first documented systematic investigation of ship hull vibration by Schlick [1] in
1884, over 40 years elapsed before Lewis [2], in 1927, found that the water surrounding the
ship has an important effect on the vibratory response. Until that time the significant differ-
ences between observed and calculated natural frequencies of the hull could not be explained.
Lewis [3] presented a procedure to account for the effects of the fluid which is still by and
large used today to analyse ship-hull-girder vibration [4]. In that method, the added mass of
each section of the ship hull is found by use of a two-dimensional approach. Then, the added
mass is multiplied by a ‘J -factor’ to account for three-dimensional flow influence.

Others have continued his work to investigate values of theJ -factor using different types
of bodies or extending the types of ship sections. These have notably been Lamb [5, 139–159],
Landweber [6] and Voruset al. [7]. A detailed review can be found in Daidola [4].
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Figure 1. Problem definition.

Added mass depends on flow domain, such as water depth, flow-field boundaries, ship
underwater shape and vibration modes. Thus, a ship hull in water of infinite water depth and
finite water depth will show different vibration characteristics. At the present time, the added
mass in water of infinite depth is used to predict ship-hull vibration. There are still only a few
studies of ship-hull vibrations in shallow water, especially when the ship hull vibrates close to
water bottom.

In this paper, the problem that a ship-hull girder vibrates vertically close to water bottom is
studied. It is motivated by the increasing attention in recent years to accidents where grounding
of large oil tankers resulted in severe oil spill. Cases have been found where oil spill occurred
when tankers ran aground on relatively plane sloping bottoms. This is due to overall failure
of the ship hull. This mode of failure seems not to have been discussed much [8]. A full
fluid-structure interaction solution to the problem would require a lot of numerical effort and
experimental verification, which are still beyond our capabilities at present time.

To simplify the problem as much as possible without losing essential features, we study a
uniform beam of a typical ship section vibrating vertically close to water bottom and solve this
problem in this paper by use of a simple model. In Section 2 a matched-asymptotic-expansion
method introduced by Newmanet al. [9] is used to find the added mass of a section vibrating
vertically. A simple formula for the added mass is derived. The numerical values obtained
from the present method and from BEM are compared. They are in good agreement in the
range considered here.

In Section 3 the natural vibrations of a uniform beam of a typical ship section is studied
with hydrodynamic influence included. Section 4 gives some numerical examples, which show
that the shallow water influence is significant. The first- and second-order natural frequencies
are reduced by a factor ramping from 1·4 compared with those of the same ship vibrating in
deep water.

2. Added mass close to water bottom

Consider a two-dimensional cylinder with a typical U-shaped section as shown in Figure 1.
The water depth isH and the gap between ship and water bottoms ish1. Typically, ε =
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h1/H 6 0·2, which is assumed small throughout this paper. It is further assumed that(b0 −
b1)/H = O(ε), (h0−h1)/H = O(ε) and(b0−b1)/(h0−h1) = O(1). The fluid domain isD,
bounded by the free surface aty = 0, the body surfaces and the bottom surface aty = −H .
The cylinder oscillates with the vertical velocityRe{V eiwt}, where i= √−1. With the usual
assumption of irrotational flow, and small amplitudes of motion, the fluid velocity is given by
the gradient of a velocity potentialφ(x, y; t) = Re{ϕ(x, y) eiwt }, which satisfies

∇2ϕ(x, y) = 0, (x, y) ∈ D, (1)

∂ϕ

∂y
− νϕ = 0, y = 0, ν = ω2/g, (2)

∂ϕ

∂n

∣∣∣∣
on body surface

= Vn, ∂ϕ

∂y
= 0, y = −H, (3, 4)

lim
x→±∞Re

(
∂ϕ

∂x
∓ iνϕ

)
= 0, (5)

whereVn is the normal velocity of the body surface andg is the gravity acceleration. Based
on the fact thatε is a small quantity, the fluid domain can be divided into three regions:

1: Internal regionD1 : |x| < b1 and |y +H |/h1 = O(1);
2: Intermediate regionD2 : ||x| − b0| = O(h1) and |y +H |/h1 = O(1);
3: External regionD3 : |x| > b0 and h1/y = O(ε).

The above division allows us to use a matched-asymptotic-expansion method to solve the
problem.

The flow in the ‘internal region’ bounded by the narrow gap between the ship and water
bottoms is first considered. Suppose the internal region potential isϕ1(x, y), which satisfies

∇2ϕ1(x, y) = 0, (x, y) ∈ D1, (6)

∂ϕ1

∂y

∣∣∣∣
y=−H+h1

= V, ∂ϕ1

∂y

∣∣∣∣
y=−H

= 0, (7, 8)

ϕ1(−x, y) = ϕ1(x, y). (9)

The solution to the above problem [10] is

ϕ1(x, y) = − V

2h1
[x2 − (y +H)2] + A0+

∞∑
`=1

A` cosh
`πx

h1
cos

`π(y +H − h1)

h1
, (10)

where the first term is the particular solution and the rest the homogenous solution. As|x| →
b1, the last term is of order e1/ε and tends to infinity asε → 0. Thus,A` = 0 for ` > 1.
Meanwhile, as|x| → b1, (y + h)2/x2 = O(ε2). The outer expansion of the internal solution
is then

ϕ
(o)
1 = −

V

2h1
x2 + A0. (11)
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Figure 2. Schwarz–Christoffel transformation.

The above equation shows that the flow in thex-direction dominates the flow in they-direction
and the flow in they-direction is negligible for the outer expansion solution.

The intermediate region refers to the neighborhood of point(b0,−H), in which (y +
H)/h1 = O(1) as shown in Figure 2. In this figure, the section shape is defined byθ1 =
π/n + π and θ2 = π/2 − π/n + π , wheren is arbitrary. Define complex co-ordinates
Z = x+ iy. The flow is equivalent to that where the fluid flows into or out of the ‘narrow gap’
in an infinite domain. To find the potential in this region, a Schwarz–Christoffel transformation
is used to map the flow in theZ-plane into the point source flow in theζ -plane. In Figure 2,
pointsa, b, c, d, e andf in theZ-plane are mapped to their counterpartsa′, b′, c′, d ′, e′ and
f ′ in theζ -plane. The required transformation function is (see Appendix)

Z = b1+ i(h1−H)− ih1

πβ1/2−1/n

∫ ζ

1

(ζ − 1)1/n(ζ − β)1/2−1/n

ζ
dζ, (12)

whereβ is the point in theζ -plane corresponding to the point(b0, h0−H) in theZ-plane. If
we definet0 =

√
(b0− b1)

2+ (h0− h1)
2, β is determined by the following equation derived

from Equation (12)

πβ1/2−1/nt0 = h1

∫ β

1

(ζ − 1)1/n(β − ζ )1/2−1/n

ζ
dζ. (13)

We can also change the above equation into an algebraic equation forβ, for which can not
give an explicit expression forβ and thus is omitted here. Oncen is given, we can findβ from
Equation (13). For example, if the section is rectangular, thenn = 2 and from Equation (13),
β = 1. Generally, numerical methods are needed to solve the above eqution in order to find
the correspondingβ for givenn. In Figure 3, theβ values forn = 3, n = 4 andn = 6 are
given withh1/t0 as abscissa andh1/β

1/2−1/n as ordinate. As can be seen later, the quantity
h1/β

1/2−1/n appears in the final formula for the added mass and is selected as the ordinate
here.

In the Appendix we give the asymptotic expansion forζ →∞

ζ =
(
πZβ1/2−1/n

2ih1

)2

, (14)
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Figure 3. Relationship betweenβ andn.

and the asymptotic expansion asζ → 0

Z = b1+ h1

π
(logζ +K), where K =

(
1

2
− 1

n

)
1

β
+ 1

n
. (15)

The flow in theζ -plane is a point-source flow with strengthQ at the origin point, of which
the complex potential is

W(ζ) = Q

2π
logζ + C, (16)

whereQ andC are to be found through matching. The outer expansion follows asζ →∞

ϕ
(o)
2 = Re{W |ζ→∞} = Q

π
log

πrβ1/2−1/n

2h1
+ C, (17)

wherer = √(x − b0)2+ (y +H)2. The inner expansion follows asζ → 0

ϕ
(i)
2 = Re{W |ζ→0} = Q

2h1

(
x − b1 − h1

π
K

)
+ C. (18)

In the external region, the vertical sides of the ship do not generate any disturbance. The
only source to generate the disturbance is the periodical ‘inhaling’ and ‘exhaling’ water from
the narrow gap between the ship and water bottoms. This disturbance is equivalent to a source
with strengthq at point(b0,−H), which is described by

∇2ϕ3(x, y) = 0, (x, y) ∈ D3, (19)

∂ϕ3

∂y
− νϕ3 = 0, y = 0, ν = ω2/g, (20)

∂ϕ3

∂x

∣∣∣∣|x|=b0

= 0,
∂ϕ3

∂y

∣∣∣∣
y=−H

= 0, (21, 22)
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lim
x→±∞Re

(
∂ϕ

∂x
∓ iνϕ3

)
= 0. (23)

The solution to the above problem is given by Wehausen and Laitone [11, pp. 447–483]

ϕ3(x, y)

= q

{
1

m0

m0− ν2

m0H − ν2H + ν cosh[m0(y +H)] cosh(m0H) sin[m0|x − b0|]

−
∞∑
k=1

1

mk

mk + ν2

mkH + ν2H − ν cosh[mk(y +H) cos(mkH)exp[−mk|x − b0|]
}

+iq

{
1

m0

m0− ν2

m0H − ν2H + ν cosh[m0(y +H)] cosh(m0H) cos[m0(x − b0)]
}
, (24)

wherem0 andmk satisfy

m0 tanh(m0H)− ν = 0 and mk tan(mkH)+ ν = 0. (25)

In this solution, the free-surface effects are taken into account. Generally speaking, the fre-
quencies of the waves in oceans range from 0·04 – 2 Hz. Above 2 Hz, the wave effects can be
neglected and the free-surface condition can be replaced by the high-frequency limitν →∞.
On the other hand, the lowest natural frequencies of a typical ship range from 5 Hz to 10 Hz.
Only in very special cases for supertankers may the lowest natural frequency be as low as
1 Hz. Here, we assume that wave effects are not important and that the free-surface condition
can be replaced byϕ3 = 0, which we obtain from Equation (20) by lettingν → ∞. The
corresponding solution can be obtained forν → ∞ in Equation (24). Settingν → ∞, we
know thatm0 → ∞ andmkH → (k − 1/2)π from Equation (25). Therefore, the first and
the last terms in Equation (24) are zeros asm0 → ∞. Substitutingmk in Equation (24), we
obtain the solutionϕ3 in the limit of high frequency

ϕ3(x, y) = −q
∞∑
k=1

1

mkH
cos(mkα)e−mkγ , (26)

where

α = (y +H) and γ = |x − b0|. (27)

As r = √(x − b0)2+ (y +H)2→ 0, we obtain the inner expansion ofϕ3

ϕ
(i)

3 = −q
∞∑
k=1

[
1

mkH
cos(mkHα)e−mkHγ − 1

kπ
e−kπr/H

]
− q

∞∑
k=1

1

kπ
e−kπr/H

= q

π
log(1− e−πr/H)− q

∞∑
k=1

[
1

mk
cos(mkα)e−mkγ − 1

kπ
e−kπr/H

]

∼ q

π
log(πr/H)− q

π
S, (28)
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whereS is

S = 1

2

∞∑
k=1

1

k(k − 0·5) = 2
∞∑
k=1

1

2k(k − 1)

= 2
∞∑
k=1

(
1

2k − 1
− 1

2k

)
= 2(1− 1

2 + 1
3 − · · ·) = 2 log 2. (29)

ConstantsA0, q,Q andC are to be determined by matching. Through the intermediate
region to the external region, we have the matching condition

ϕ
(i)
3 = ϕ(o)2 , (30)

which yields

Q = q and C = − q
π
S + q

π
log

[
2h1

Hβ1/2−1/n

]
. (31)

Another matching requirement,i.e., ∂ϕ(i)3 /∂r = ∂ϕ
(0)
2 /∂r, turns out to give the same results

as above, and thus is omitted here.
Through the intermediate and internal regions, we have

ϕ
(i)
2 = ϕ(o)1 , on |x| = b1, (32)

∂ϕ
(i)
2

∂x
= ∂ϕ

(o)
1

∂x
, on |x| = b1, (33)

which yield

Q = −2V b1 and A0 = −QK
2π
+ C + V b

2
1

2h1
. (34)

The hydrodynamic force on the body follows from the linearized Bernoulli’s equation

P = ωρϕ|on body surface= 2ωρ

[∫ b1

0
ϕ1 dx +

∫ b0

b1

ϕ2(b0− b1)√
(b0− b1)2+ (h0− h1)2

dx

]
. (35)

Substitutingϕ1 andϕ2 in the above equation, we have

P

πωρV b2
1

= 2b1

3πh1
+ 2K

π2

− 4

π2

(
1+

√
(b0 − b1)2+ (h0− h1)2

b1

)(
log

2h1

Hβ1/2−1/n
− S

)
. (36)

The added massma is defined by

ma

ωVπρb2
0

= b2
1

b2
0

[
2b1

3πh1
+ 2K

π2
− 4

π2

(
1+

√
(b0− b1)2+ (h0− h1)2

b1

)

×
(

log
2h1

Hβ1/2−1/n
− S

)]
. (37)
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Table 1. Constants in the eigen-solutions.

Mode i 1 2 3 4 5

ei 3·56 9·82 19·24 31·81 47·52

qiL 4·730 7·8532 10·9956 14·137 17·2788

Ri 0·9825 1·008 0·99997 1·0000 0·999999

3. Ship-vibration prediction

Consider a uniform beam of the section shown in Figure 1 as a simplified model of the ship
hull. The moment of inertia of this section isI and the elastic modulusE. The mass per unit
length ism and the added massma. LetM = m+ma be the virtual mass per unit ship length.
The ship length isL.

The vertical flexural displacement is assumed to beW(x, t) = y(x) cos(ωt). When the
effects of rotary inertia and shear deflection of the beam are assumed small, which is a reason-
able assumption in ship-vibration analysis in most cases, the vibratory response is described
by the following Euler equation

EI
d4y(x)

dx4
−Mω2y(x) = 0. (38)

In general, the boundary condition for the above equation in ship vibration analysis is free-
free. The solution for a free-free beam is

natural frequency ωi = 2πei

√
EI

ML4
, (39)

eigen mode ψi(x) = cosh(qix)+ cos(qix)− Ri(sinh(qix)+ sin(qix)), (40)

whereei, qi andRi for the first five orders are given in Table 1.
From the above equation we conclude that, for a uniform beam, the added mass does not

come into the eigenmode equations and thus does not have any influence on the vibration
modes. This is not true for a nonuniform beam. A better understanding of the hydrodynamic
influence on the vibration modes will come from a numerical analysis.

4. Numerical results and analysis

The numerical values of the added mass for a rectangular section(n = 2) are predicted by
Equation (37) and plotted in Figure 4 withh1/H as abscissa and the nondimensional added
mass as ordinate. The ratioh1/H ranges from 0·01 to 0·5. Because the differences of the
numerical values at the two ends are dramatic a logarithm scale is used. To show the influence
of another important parameterb0/H , three curves forb0/H = 1·0,0·5 and 0·25 are also
given in the figure.
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Table 2. Definition of U-shaped sections.

b0/H b1/H h0/H t0/H

1·0 0·1 0·1 0·1414

0·5 0·1 0·1 0·1414

0·25 0·05 0·05 0·0707

Figure 4. Added mass obtained from the present
method and BEM for rectangular sections(n = 2).

Figure 5. Added mass obtained from the present
method and BEM for U-shaped sections(n = 4).

To check the validity of Equation (37), the numerical results obtained from BEM [12
pp. 347–352] for the same sections and fluid domains are also given in Figure 4. To minimize
the numerical-approximation errors in BEM, the boundary is first discretized byN1 elements
(not necessarily uniform) and we obtain the added massm(1)a . In the second round of compu-
tations, the boundary is descritized byN2 = 4N1 elements and we obtain the numerical value
m(2)a . If the relative error(m(2)a − m(1)a )/m(2)a < 2%, thenm(2)a is regarded as the true value.
Otherwise, the computation is continued until the relative error is smaller than the specified
value. Whenh1/H > 0·15, the convergence of the BEM result to the true value is very fast.
Whenh1/H 6 0·1, especially whenh1/H ≈ 0·01, the convergence to the true value is very
slow, and many boundary elements have to be used. This is due to the rapid flow variation in
the narrow gap between the ship and the water bottoms.

Generally speaking, the agreement between the results obtained from BEM and the present
method are good for smaller values ofh1/H . If the BEM results are taken as the true values,
and the relative errors between the two methods are kept within 5%, it is observed from Fig-
ure 4 that Equation (37) is valid ifh1/H 6 0·4 for b0/H = 1·0, h1/H 6 0·2 for b0/H = 0·5,
andh1/H 6 0·1 for b0/H = 0·25. In other words, Equation (37) is valid ifh1/b0 6 0·4. This
value is higher than expected, because, at the beginning of the paper,h1/b1 was assumed to
be smaller than 0·1–0·2.

In Figure 5, we consider a U-shaped section(n = 4) with 45◦ corner. The section shapes
for the three different values ofb0/H are defined in Table 2. The values of the added mass
for the three cases show a tendency similar to that of Figure 4. In this example, however,
Equation (37) is valid ifh1/b1 6 0·3–0·4, if 5% relative errors are used as before.



372 Z. Zong and K. Y. Lam

To study the hydrodynamic influence on the natural vibration, a uniform beam of length
L = 100 meters is considerd. One ship section is rectangular with width 2b0 = 20 meters and
draftD = 8 meters. Another section considered isU -shaped with 45◦ corners. Its width and
draft are the same as the rectangular one. The other section parameters are:b1 = 9 meters and
h0 = h1+ 1 meters, whereh1 is a variable.

Figure 6. The first-order natural frequency for the
uniform beam.

Figure 7. The second-order natural frequency for the
uniform beam.

Figures 6 and 7 present the first- and second-order natural frequencies of the above beam
models as predicted by Equation (39). The natural frequencies are increasing functions of
h1/H with the frequencies in deep water as the asymptotic line. From Figures 6 and 7, it
is estimated that the first- and second-order frequencies in deep water are about three times
higher than those close to water bottom forh1/H = 0·01 and about 1·4 times higher for
h1/H = 0·3. Because three-dimensional effects are neglected, the frequency differences
predicted above are somewhat over-estimated. Even so, these values still show clearly that
the influence of a shallow-water bottom on ship-hull vibrations is significant. For higher-order
natural frequencies, which exhibit a similar tendency, are not given here.

One comment should be given on the two-dimensional assumption on added mass. As is
known, this assumption may overestimate added-mass values. TheJ -factor introduced in the
introduction is, however, near to 1 for lower-order vibrations in many cases. Especially for a
uniform beam, a two-dimensional flow can give a good prediction. Even so, further studies
are needed to clarify three-dimensional effects on the added mass.

5. Conclusion

Motivated by the increasing attention that has been given in recent years to accidents where
grounding of large oil tankers resulted in severe spill, the problem of a ship-hull girder vibrat-
ing vertically close to water bottom has been studied in this paper.

A simple formula for the added mass of a section vibrating vertically was found by means
of the method of matched asymptotic expansions. The numerical values obtained from the
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present method and BEM have been compared. They were seen to be in good agreement in
the range considered here.

With the hydrodynamic influence included, the natural frequencies of a uniform beam,
which vibrates vertically in shallow water with different gaps between the ship and water
bottoms, have been given. Numerical values showed that the effects of shallow water are
significant. The frequencies in deep water are about 1·4–3 times higher than those in shallow
water, which are more likely to cause the overall failure of the ship-hull girder.

Despite the assumptions introduced in this paper, it is safe to conclude that the influence
of shallow water on ship-hull vibration, especially the natural frequencies, are significant and
should be considered in the design stage.

Appendix. Schwarz–Christoffel transformation

By means of a Schwarz–Christoffel transformation the physical region in theZ-plane can
be mapped to the upper half of theζ -plane. As Figure 2 illustrates, the pointsa, b, c, d, e
andf in theZ-plane are mapped to their counterpartsa′, b′, c′, d ′, e′ andf ′ in the ζ -plane.
Referring to Figure 2 withθ1 = π/n+ π, θ2 = π/2− π/n+ π wheren is arbitrary, we have
the Schwarz–Christoffel transformation as follows

Z = A
∫
(ζ − 1)1/n(ζ − β)1/2−1/n

ζ
dζ + B. (A.1)

Noting that in this case

ζ = 0 for Z = −∞, and ζ = 1 for Z = b1 + i(h1−H),
we have

Z = −Ai
∫
(ζ − 1)1/n(ζ − β)1/2−1/n

ζ
dζ + b1+ i(h1−H). (A.2)

In order to findA, let us consider the change inZ as we pass fromb to c. In theZ-plane
clearly1Z = ih1 whereas in theζ -plane moving fromb′ to c′ corresponds to passing through
a semicirclecr : ζ = r eiλ (λ going fromπ to 2π).

1Z = −Ai
∫
cr

(ζ − 1)1/n(ζ − β)1/2−1/n

ζ
dζ ≈ −Ai

∫
cr

(−1)1/n(−β)1/2−1/n

ζ
dζ

=
∫ 2π

π

r eiλ

r eiλ
idλβ1/2−1/n = πAiβ1/2−1/n.

Comparing both values from1z we have

A = h1

πβ1/2−1/n
,

andZ is given by

Z = b1+ i(h1−H)− ihi
πβ1/2−1/n

∫ ζ

1

(ζ − 1)1/n(ζ − β)1/2−1/n

ζ
dζ. (A.3)
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Imposing the condition thatZ = b0+ i(h0−H) for ζ = β, we can findβ from the above
equation for givenn. The approximation forζ → 0 is

Z = b1 + i(h1−H)− ih1

πβ1/2−1/n

∫ ζ

1

iβ1/2−1/n(1− ζ )1/n(1− ζ/β)1/2−1/n

ζ
dζ

= b1 + i(h1−H)+ h1

π

∫ ζ

1

∞∑
l=0

Cl1/n(−ζ )l
∞∑
m=0

Cm1/n(−ζ/β)m dζ/ζ

≈ b1 + i(h1−H)+ h1

π
(logζ +K), (A.4)

whereK = (1/2− 1/n)/β + 1/n is the integration constant.
The approximation forζ →∞ is

Z = b1+ i(h1−H)− ih1

πβ1/2−1/n

∫ ζ

1

ζ 1/nζ 1/2−1/n

ζ
dζ ≈ −2ih1ζ

1/2

πβ1/2−1/n
. (A.5)
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