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Abstract. The problem of a uniform ship-hull girder vibrating vertically close to water bottom is studied. A simple
formula for the added mass is found by use of the method of matched asymptotic expansions. Results obtained
from the present method and BEM are compared. They are in good agreement in the range considered here. The
obtained added mass is used to predict the natural vibrations of a uniform beam vibrating close to water bottom.
Numerical values show that the effects of shallow water are significant. The first- and second-order frequencies of
the ship hull studied in this paper in deep water are abalt3d times higher than those in shallow water.
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1. Introduction

Structures like ship hulls vibrating in air and in water exhibit quite different vibration charac-
teristics. The difference is due to hydrodynamic forces acting on the ship hull. Itis well known
that this hydrodynamic force can greatly reduce the natural frequencies of the ship hull.

Hydrodynamic influence on ship-hull vibration in water is expressed in terms of added
mass. A ship hull vibrating in water brings the surrounding water in motion, which in turn
exerts an opposing force on the hull. This additional force is required to accelerate the sur-
rounding fluid. The effect is the same if an addition were made to the mass of the hull. This
addition is hydrodynamic inertia mass called added mass. A vibrating ship then acts as if an
added mass were attached. The added mass is of the same order as the ship mass and, thus,
the natural frequencies of a ship hull are notably different from those of the same ship hull in
air.

After the first documented systematic investigation of ship hull vibration by Schlick [1] in
1884, over 40 years elapsed before Lewis [2], in 1927, found that the water surrounding the
ship has an important effect on the vibratory response. Until that time the significant differ-
ences between observed and calculated natural frequencies of the hull could not be explained.
Lewis [3] presented a procedure to account for the effects of the fluid which is still by and
large used today to analyse ship-hull-girder vibration [4]. In that method, the added mass of
each section of the ship hull is found by use of a two-dimensional approach. Then, the added
mass is multiplied by af-factor’ to account for three-dimensional flow influence.

Others have continued his work to investigate values of/tiactor using different types
of bodies or extending the types of ship sections. These have notably been Lamb [5, 139-159],
Landweber [6] and Vorust al. [7]. A detailed review can be found in Daidola [4].
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Figure 1. Problem definition.

Added mass depends on flow domain, such as water depth, flow-field boundaries, ship
underwater shape and vibration modes. Thus, a ship hull in water of infinite water depth and
finite water depth will show different vibration characteristics. At the present time, the added
mass in water of infinite depth is used to predict ship-hull vibration. There are still only a few
studies of ship-hull vibrations in shallow water, especially when the ship hull vibrates close to
water bottom.

In this paper, the problem that a ship-hull girder vibrates vertically close to water bottom is
studied. Itis motivated by the increasing attention in recent years to accidents where grounding
of large oil tankers resulted in severe oil spill. Cases have been found where oil spill occurred
when tankers ran aground on relatively plane sloping bottoms. This is due to overall failure
of the ship hull. This mode of failure seems not to have been discussed much [8]. A full
fluid-structure interaction solution to the problem would require a lot of numerical effort and
experimental verification, which are still beyond our capabilities at present time.

To simplify the problem as much as possible without losing essential features, we study a
uniform beam of a typical ship section vibrating vertically close to water bottom and solve this
problem in this paper by use of a simple model. In Section 2 a matched-asymptotic-expansion
method introduced by Newmaat al. [9] is used to find the added mass of a section vibrating
vertically. A simple formula for the added mass is derived. The numerical values obtained
from the present method and from BEM are compared. They are in good agreement in the
range considered here.

In Section 3 the natural vibrations of a uniform beam of a typical ship section is studied
with hydrodynamic influence included. Section 4 gives some numerical examples, which show
that the shallow water influence is significant. The first- and second-order natural frequencies
are reduced by a factor ramping fromtlcompared with those of the same ship vibrating in
deep water.

2. Added mass close to water bottom

Consider a two-dimensional cylinder with a typical U-shaped section as shown in Figure 1.
The water depth idf and the gap between ship and water bottoma,isTypically, ¢ =
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hi/H < 0-2, which is assumed small throughout this paper. It is further assume@ghat
b))/H = O(¢), (ho—h1)/H = O(e) and(bg—b1)/(hg—h1) = O(1). The fluid domain i,
bounded by the free surface at= 0, the body surfaces and the bottom surface at —H.

The cylinder oscillates with the vertical veloc®ye{V €*'}, where i= /—1. With the usual
assumption of irrotational flow, and small amplitudes of motion, the fluid velocity is given by
the gradient of a velocity potential(x, y; 1) = Re{p(x, y) €'}, which satisfies

Vp(x,y) =0, (x,y) €D, (1)
0
a—(p—vgo:O, y:0’ v:wz/g’ (2)
y
0 d
¢ —v,, ¥_o y-—-m (3.4)
on on body surface 3y
. 0 .
xlToo e (a + |V(,0> N 0’ (5)

whereV, is the normal velocity of the body surface agds the gravity acceleration. Based
on the fact that is a small quantity, the fluid domain can be divided into three regions:

1. Internal regionD; : |x| <by and |y+ H|/hi= 0();
2. Intermediate regio®; : ||x| — bg| = O(h1) and |y+ H|/hy = O(D);
3. External regiorDs: |x| > by and hi/y = O(e).

The above division allows us to use a matched-asymptotic-expansion method to solve the
problem.

The flow in the ‘internal region’ bounded by the narrow gap between the ship and water
bottoms is first considered. Suppose the internal region potenalsis y), which satisfies

Vipi(x,y) =0, (x,y) € Dy, (6)
0 0

e v, A =0 (7.8)
OV ly——r4ny Y ly——p

P1(—=x,y) = @1(x, y). 9)

The solution to the above problem [10] is

v _, ) > tnx  An(y+ H — hy)
<ﬂ1(x,y)=—ﬂl[x —(y+H)]+A0+ZA@coshh cos

h b
=1 1 1

(10)

where the first term is the particular solution and the rest the homogenous solutipn.-As
b1, the last term is of order '€ and tends to infinity as — 0. Thus,A, = 0 for ¢ > 1.

Meanwhile, agx| — b1, (y + h)?/x? = O(¢?). The outer expansion of the internal solution
is then

(0) V 2
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Figure 2. Schwarz—Christoffel transformation.

The above equation shows that the flow inthéirection dominates the flow in thedirection
and the flow in they-direction is negligible for the outer expansion solution.

The intermediate region refers to the neighborhood of p@pt—H), in which (y +
H)/h1 = 0O(1) as shown in Figure 2. In this figure, the section shape is defined] by
n/n+mandb, = 7/2 — n/n + 7w, wheren is arbitrary. Define complex co-ordinates
Z = x +iy. The flow is equivalent to that where the fluid flows into or out of the ‘narrow gap’
in an infinite domain. To find the potential in this region, a Schwarz—Christoffel transformation
is used to map the flow in th&-plane into the point source flow in tlieplane. In Figure 2,
pointsa, b, ¢, d, e and f in the Z-plane are mapped to their counterpartsh’, ¢’, d’, ¢/ and
finthe¢-plane. The required transformation function is (see Appendix)

Z=by+i(hy—H) —

H ¢ _ 1\1/n _ 1/2-1/n
1hy / =7 =B dz. (12)
1

7.[131/271/11 e

whereg is the point in the; -plane corresponding to the poitity, 1o — H) in the Z-plane. If
we definery = /(bo — b1)2 + (ho — h1)2, B is determined by the following equation derived
from Equation (12)

B (r _ Nn(g _ #\1/2-1/n
Y2 Yny — hl/ ¢ -=D7"B-%) dz. (13)
1

¢

We can also change the above equation into an algebraic equatign fimr which can not
give an explicit expression fg¢ and thus is omitted here. Ongas given, we can fing from
Equation (13). For example, if the section is rectangular, then2 and from Equation (13),
B = 1. Generally, numerical methods are needed to solve the above eqution in order to find
the corresponding for givenn. In Figure 3, thes values forn = 3,n = 4 andn = 6 are
given with i1 /1y as abscissa anith/8Y/2~1/" as ordinate. As can be seen later, the quantity
hq/BY?~1/" appears in the final formula for the added mass and is selected as the ordinate
here.

In the Appendix we give the asymptotic expansionfor> oo

B nZﬂl/Z—l/n 2
= (%m) .
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Figure 3. Relationship betweeg andn.

and the asymptotic expansionas> 0

h 1 1\1 1
Z=b1+—l(log§+K), where K:(———>—+—. (15)
T 2 n/B n

The flow in thez -plane is a point-source flow with strengghat the origin point, of which
the complex potential is

W) = % logs + C, (16)

whereQ andC are to be found through matching. The outer expansion follows-asco

) 0 wrpY2=1/n
05" = Re{W|; o) = — log —5— *+C. (17)

wherer = /(x — bo)? + (y + H)2. The inner expansion follows gs— 0
(@) 0 h1
Re{W|;~ol= — [x—b— =K | +C. 18
®, e{Wl;~o} 2h1(x - ) (18)

In the external region, the vertical sides of the ship do not generate any disturbance. The
only source to generate the disturbance is the periodical ‘inhaling’ and ‘exhaling’ water from
the narrow gap between the ship and water bottoms. This disturbance is equivalent to a source
with strengthg at point(bg, — H), which is described by

VZp3(x,y) =0, (x,y) € D3, (19)
3

o9 s =0, y=0,v=0?g, (20)
dy

3 3

993 —0, 9¢3 —0, (21, 22)

X {|x=pg 0 ly——n
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. 0 .
lim PRe — Fivps ) =0. (23)
x—+o00 0x

The solution to the above problem is given by Wehausen and Laitone [11, pp. 447-483]

(P3(X, )’)

1 mo—v2

=491 cos H)] coshimoH) sin —b
K {mo moH — v2H + v Hmo(y + H)]coshimoH) sinimo|x — bol]

s 1 my + 1)2
— — > coshimy(y + H) coSm; H) exp—my|x — bgl]
1 mympyH +veH —v
. 1 niog — U2
+ig \ — > coslimo(y + H)] cosiimoH) codmo(x — bo)]{ , (24)
momoH —veH +v

wheremq andm, satisfy
motanhimgH) —v=0 and mtanim;H)+v =0. (25)

In this solution, the free-surface effects are taken into account. Generally speaking, the fre-
guencies of the waves in oceans range fro@46- 2 Hz. Above 2 Hz, the wave effects can be
neglected and the free-surface condition can be replaced by the high-frequeney-fimib.

On the other hand, the lowest natural frequencies of a typical ship range from 5Hz to 10 Hz.
Only in very special cases for supertankers may the lowest natural frequency be as low as
1Hz. Here, we assume that wave effects are not important and that the free-surface condition
can be replaced by; = 0, which we obtain from Equation (20) by letting — oo. The
corresponding solution can be obtained for~ oo in Equation (24). Setting — oo, we

know thatmo — oo andmH — (k — 1/2)m from Equation (25). Therefore, the first and

the last terms in Equation (24) are zerosias— oo. Substitutingm, in Equation (24), we
obtain the solutiorp; in the limit of high frequency

o0 1 .
p3(x,y) = —¢q ; P cosma) € " (26)
where
a=(y+H) and y =|x — bgl. 27)

Asr = ./(x —bg)2 + (y + H)2 — 0, we obtain the inner expansion of

=1 1 =1
(i) —my H —kmr/H —kmr/H
@3 = —qE [k—cos(mkHa)e k V—k—e ”/i|—q§ € mr/
k=1 k=1

o
1 1
B % log(1 — e/ —gq ) [m— cosmer) € — <= e’””/H]
k=1 Lk T

~ Liogmr/Hy — Ls, (28)
v v
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whereS is
¢ _ 1§: 1,y 1
2~ k(k —05) ~ 2k(k — 1)
x 1 1
_ 22(@‘5)22(1‘%+%““)=2'°gz (29)
k=1

Constantsdg, g, Q andC are to be determined by matching. Through the intermediate
region to the external region, we have the matching condition

03 =y, (30)
which yields
q q 2h

Another matching requiremerite., dpy’ /ar = dpy)/dr, turns out to give the same results
as above, and thus is omitted here.

Through the intermediate and internal regions, we have

o)) =, onlx|= by, (32)
PYSORENPIRC
962 _ %91 , on|x| = by, (33)
ox ox
which yield
K Vb2
Q0 =-2Vb; and AO:—Q—+C+—1. (34)
2 2]’!1
The hydrodynamic force on the body follows from the linearized Bernoulli's equation

bo @2(bo — b1)
by« (bo — b1)2 + (ho — h1)2

Substitutingp, andg, in the above equation, we have

by
P = wp@lon body surface= 20 |:/ p10x + dx:| . (35)
0

P 2bq1 2K
2 = Tz
TwpVbi 3th, =«
4 V(bo — b1)? + (ho — h1)? 2hy

The added mass,, is defined by
m__ B [ 2, 2K 4 (1 Vo b (g hl)Z)

3rhy w2 nm2

a)Vn,obS - b_cz, by

2h
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Table 1. Constants in the eigen-solutions.

Modei 1 2 3 4 5

e; 3.56 982 1924 3181 4752
qiL 4.730 78532 109956 14137 172788
R; 09825 1008 099997 10000 0999999

3. Ship-vibration prediction

Consider a uniform beam of the section shown in Figure 1 as a simplified model of the ship
hull. The moment of inertia of this section isand the elastic modulus. The mass per unit
length ism and the added mass,. Let M = m + m, be the virtual mass per unit ship length.
The ship length id..

The vertical flexural displacement is assumed tolbe, 1) = y(x) coSwr). When the
effects of rotary inertia and shear deflection of the beam are assumed small, which is a reason-
able assumption in ship-vibration analysis in most cases, the vibratory response is described
by the following Euler equation

d*y(x)
dx4

EI — Mw?y(x) = 0. (38)

In general, the boundary condition for the above equation in ship vibration analysis is free-
free. The solution for a free-free beam is

natural frequenc = 2me;,/ El (39)
q y a)l - el ML47
eigen mode ; (x) = cosh(g;x) + coSg;x) — R;(sinh(g;x) + sin(g; x)), (40)

wheree;, g; and R; for the first five orders are given in Table 1.

From the above equation we conclude that, for a uniform beam, the added mass does not
come into the eigenmode equations and thus does not have any influence on the vibration
modes. This is not true for a nonuniform beam. A better understanding of the hydrodynamic
influence on the vibration modes will come from a numerical analysis.

4. Numerical results and analysis

The numerical values of the added mass for a rectangular sdatien2) are predicted by
Equation (37) and plotted in Figure 4 with /H as abscissa and the nondimensional added
mass as ordinate. The ratlq/H ranges from @1 to 05. Because the differences of the
numerical values at the two ends are dramatic a logarithm scale is used. To show the influence
of another important parametég/ H, three curves fobg/H = 1.0, 0-5 and 025 are also

given in the figure.
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Table 2. Definition of U-shaped sections.

bo/H b1/H ho/H to/H

1.0 01 01 01414
05 01 01 01414
0-25 005 005 00707

Pl + BEMfor bo/H=10 | 20 Fa + :BEMfor bo/H=10
o KN O BEMfor by/H=05 | 2 15 F O\ © BEMfor bg/H=05
als 15 . 0 > .
o . X :BEMfor by/H=0.25 Ela N, X :BEMfor bgo/H=0.25
g 10 . 0 1 g 10 | *,

Added mass coefficient
Added mass coefficient

~
| —.— (Eq.(87)forbgy/H= 1.0‘\\

-
-

| —.— Ea (87)forbg/H=10

— :Eq.(37)forbg/H=05 S —  Eq. (37)forbg/H=05 N
05 | =-- E9.(37)forbg/H=025 o5 | === Eq.(@7forby/H=025
001 002 005 0.1 02 0304 05 001 002 005 01 02 0304 05
Gap height h 4 /H Gap height h 4y /H

Figure 4. Added mass obtained from the preserffigure 5. Added mass obtained from the present
method and BEM for rectangular sectiofs= 2). method and BEM for U-shaped sectiops= 4).

To check the validity of Equation (37), the numerical results obtained from BEM [12
pp. 347-352] for the same sections and fluid domains are also given in Figure 4. To minimize
the numerical-approximation errors in BEM, the boundary is first discretize¥; Btements
(not necessarily uniform) and we obtain the added mg$'s In the second round of compu-
tations, the boundary is descritized By = 4N; elements and we obtain the numerical value
m®@. If the relative errorm®@ — mV)/m?® < 2%, thenm'? is regarded as the true value.
Otherwise, the computation is continued until the relative error is smaller than the specified
value. Whem,/H > 0-15, the convergence of the BEM result to the true value is very fast.
Whenh;/H < 0-1, especially wheth,/H ~ 0-01, the convergence to the true value is very
slow, and many boundary elements have to be used. This is due to the rapid flow variation in
the narrow gap between the ship and the water bottoms.

Generally speaking, the agreement between the results obtained from BEM and the present
method are good for smaller valuesiaf/ H. If the BEM results are taken as the true values,
and the relative errors between the two methods are kept within 5%, it is observed from Fig-
ure 4 that Equation (37) is valid ify/H < 0-4 forbg/H = 1.0, h1/H < 0-2 forbg/H = 0.5,
andhi/H < 0-1forbg/H = 0-25. In other words, Equation (37) is validif /by < 0-4. This
value is higher than expected, because, at the beginning of the paperwas assumed to
be smaller than —02.

In Figure 5, we consider a U-shaped sectipn= 4) with 45° corner. The section shapes
for the three different values @t /H are defined in Table 2. The values of the added mass
for the three cases show a tendency similar to that of Figure 4. In this example, however,
Equation (37) is valid if11 /b, < 0-3-04, if 5% relative errors are used as before.
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To study the hydrodynamic influence on the natural vibration, a uniform beam of length
L = 100 meters is considerd. One ship section is rectangular with wigte=20 meters and
draft D = 8 meters. Another section considered/isshaped with 45corners. Its width and
draft are the same as the rectangular one. The other section parameters-aemeters and

ho = h1 + 1 meters, wheré1 is a variable.
8 r T 20

In deep water (n=2)

ry
@

In deep water (n=2)

7

Frequency (Hz)
M 2 o

Frequency (Hz)

_
[=)

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
h, /H
h 1 /H 1

Figure 6. The first-order natural frequency for theFigure 7. The second-order natural frequency for the
uniform beam. uniform beam.

Figures 6 and 7 present the first- and second-order natural frequencies of the above beam
models as predicted by Equation (39). The natural frequencies are increasing functions of
hy/H with the frequencies in deep water as the asymptotic line. From Figures 6 and 7, it
is estimated that the first- and second-order frequencies in deep water are about three times
higher than those close to water bottom fay H = 0-01 and about % times higher for
hi/H = 0-3. Because three-dimensional effects are neglected, the frequency differences
predicted above are somewhat over-estimated. Even so, these values still show clearly that
the influence of a shallow-water bottom on ship-hull vibrations is significant. For higher-order
natural frequencies, which exhibit a similar tendency, are not given here.

One comment should be given on the two-dimensional assumption on added mass. As is
known, this assumption may overestimate added-mass valued.-felwor introduced in the
introduction is, however, near to 1 for lower-order vibrations in many cases. Especially for a
uniform beam, a two-dimensional flow can give a good prediction. Even so, further studies
are needed to clarify three-dimensional effects on the added mass.

5. Conclusion

Motivated by the increasing attention that has been given in recent years to accidents where
grounding of large oil tankers resulted in severe spill, the problem of a ship-hull girder vibrat-
ing vertically close to water bottom has been studied in this paper.

A simple formula for the added mass of a section vibrating vertically was found by means
of the method of matched asymptotic expansions. The numerical values obtained from the
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present method and BEM have been compared. They were seen to be in good agreement in
the range considered here.

With the hydrodynamic influence included, the natural frequencies of a uniform beam,
which vibrates vertically in shallow water with different gaps between the ship and water
bottoms, have been given. Numerical values showed that the effects of shallow water are
significant. The frequencies in deep water are abet#3 times higher than those in shallow
water, which are more likely to cause the overall failure of the ship-hull girder.

Despite the assumptions introduced in this paper, it is safe to conclude that the influence
of shallow water on ship-hull vibration, especially the natural frequencies, are significant and
should be considered in the design stage.

Appendix. Schwarz—Christoffel transformation

By means of a Schwarz—Christoffel transformation the physical region irZtpkne can
be mapped to the upper half of tlgeplane. As Figure 2 illustrates, the pointsb, ¢, d, e
and 1 in the Z-plane are mapped to their counterpartsh’, ¢/, d’, ¢/ and f’ in the ¢-plane.
Referring to Figure 2 witl¥, = 7 /n + 7, 0, = /2 — w/n + 7 wheren is arbitrary, we have
the Schwarz—Christoffel transformation as follows

_ N\IYn¢s _ py\1/2-1/n
Zoa[EoVEp

: dz + B. (A.1)

Noting that in this case
=0 forZ=-00, and ¢=1 forZ=>by+i(h,— H),

we have

— DY — g)L/2-1n
ZZ_Ai/(; )" (&~ B)
¢
In order to findA, let us consider the change fhas we pass from to c. In the Z-plane

clearly AZ = ihy whereas in the-plane moving frond’ to ¢’ corresponds to passing through
a semicirclec, : ¢ = r €* (A going fromm to 2).

_ N\In¢s _ aN1/2—1/n _N\Yn/_ avi/2—1/n
AZZ_Ai/@ i) (i B) dw_Ai/u) (gﬂ)

dz + by + i(hy — H). (A.2)

d¢

2 r eik
— / Fid)\’ﬂl/z—l/ﬂ — 7_[14i181/2—l/n.
T r

Comparing both values fromz we have

T ppy2n’

andZ is given by

Z=by+i(hy— H) —

ih. ¢ _ 1\1/n _ 1/2-1/n
1h; / & =D —B) dz. (A3)
1

7.[131/271/11 e
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Imposing the condition that = by + i(ho — H) for ¢ = B, we can finds from the above

equation for givem. The approximation fot — 0 is

Z = bi+ithy— H) —

ih]_ /C iﬁl/Z—l/n(l _ {)1/11(1 _ é-/ﬂ)l/Z—l/n dé-
1

nIBl/Zfl/n §
: h [f =
= buvit— )+ 2 [ Yl o Y e e/p e
[=0 m=0

. h
~ b1+|(h1—H)+;l(Iog§+K), (A.4)

whereK = (1/2—1/n)/B8 + 1/n is the integration constant.

The approximation fot — oo is

1/2-1/n —2ih1§1/2
¢ ~ n Y21’

: ihy ¢ gting
Z=by1+i(hy— H)— 7-[131/271/11 [L (A.5)
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